Blunt Renal Trauma After Motorcycle Accident: Computed Tomography-Based Management Strategy

Trauma Renal Contuso Após Acidente de Viação: Estratégia Terapêutica Guiada por Tomografia Computorizada

Gabriella de Macedo Calabrese¹, Márcio Luís Duarte^{2,3}, Mário Augusto Padula Castro⁴, Eduardo de Oliveira Narvaez⁴

Autor Correspondente/Corresponding Author:

Luís Duarte [marcioluisduarte@gmail.com] ORCID ID: https://orcid.org/0000-0002-7874-9332 Universidade de Ribeirão Preto (UNAERP) Campus Guarujá (SP) Brasil. Av. D. Pedro I, 3.300, Enseada, Guarujá-SP, Brazil. ZIP CODE: 11440-003.

DOI: https://doi.org/10.29315/gm.1092

KEYWORDS: Computed Tomography; Kidney/injuries.

PALAVRAS-CHAVE: Rim/lesões; Tomografia Computadorizada.

A 61-year-old male presented with severe abdominal pain and left flank hematoma following a motorcycle accident 20 minutes earlier. He exhibited bradycardia but remained hemodynamically stable. Abdominal computed tomography (CT) revealed a grade IV left renal injury according to the Kawashima classification, which stratifies renal trauma in grades I-V based on the presence of hematomas, and lacerations or collecting system involvement, with subcapsular hematoma and segmental infarction (Fig. 1). A follow-up CT performed one week later confirmed renal integrity, with no pelvic rupture or intra-abdominal fluid, supporting conservative management. The patient remained hospitalized for eight days under close monitoring, with no episodes of hematuria, fever, or hemodynamic instability. He was discharged in good condition, underwent three months of treatment with a double-J catheter, and progressed without complications during follow-up.

Renal trauma accounts for up to 10% of all abdominal injuries, with blunt trauma being the most common mechanism, usually due to road traffic accidents.¹⁻³ The American Association for the Surgery of Trauma Organ Injury Scale (AAST-OIS), primarily based on CT findings, is essential for classifying renal injuries and guiding therapeutic decisions.^{1,3,4} CT is the gold standard for imaging in these cases, offering 93% accuracy and allowing evaluation of parenchymal, vascular, and collecting system involvement.^{4,5} The Kawashima classification is widely used in radiology to grade renal trauma based on CT findings, helping to assess injury severity and guide management.^{4,5}

^{1.} Faculdade de Ciências Médicas de Santos, Santos (SP), Brazil 2. Universidade de Ribeirão Preto (UNAERP) Campus Guarujá, (SP), Ribeirão Preto, Brasil. 3. Diagnósticos da América S.A, São Paulo (SP), Brasil. 4. Clínica Radiológica Rio Verde, Rio Verde (GO), Brasil.

[©] Author(s) (or their employer(s)) and Gazeta Médica 2025. Re-use permitted under CC BY-NC 4.0. No commercial re-use.

[©] Autor (es) (ou seu (s) empregador (es)) e Gazeta Médica 2025. Reutilização permitida de acordo com CC BY-NC 4.0. Nenhuma reutilização comercial

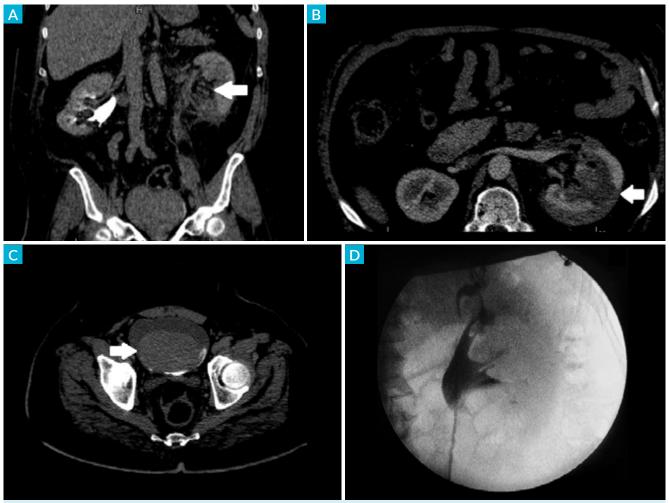


FIGURE 1. (A) Coronal contrast-enhanced in the excretory/delayed phase showing absence of contrast concentration and excretion in the left kidney (white arrow). (B) Axial venous-phase CT demonstrating an enlarged left kidney, without contrast enhancement, related to subcapsular hematoma and contusional renal oedema (white arrow). (C) Axial CT (delayed-phase) showing spontaneously hyperdense content within the urinary bladder, compatible with acute hematic content (white arrow). (D) Coronal acquisition during retrograde pyelography for double-J stent placement, without extravasation of intravenous contrast, excluding renal pelvic rupture.

Although routine repeat CT within 48–96 hours is recommended for high-grade injuries, its necessity is debated in hemodynamically stable patients.⁴ Ultrasound can be a useful alternative in selected cases, particularly when CT contrast is contraindicated.⁶ However, in unstable patients or when ultrasound is inconclusive, CT remains indispensable.^{3,4} Other imaging modalities, such as retrograde pyelography or urography, are reserved for specific diagnostic questions.³ This case illustrates that, even in high-grade renal trauma, conservative management can be safe when hemodynamic stability is preserved, provided it is guided by appropriate CT protocols.

Computed tomography is essential for the initial classification and follow-up of renal trauma, providing detailed information for therapeutic decision-making. In this case, conservative management was effective despite the high-grade injury, highlighting the importance of hemodynamic stability in guiding treatment strategy

DECLARAÇÃO DE CONTRIBUIÇÃO /CONTRIBUTORSHIP STATEMENT

GC,MD, MC, EN - Conceitualização, curadoria de dados, análise formal, metodologia, gestão de projetos, validação, rascunho original, revisão e edição.

Todos os autores aprovaram a versão final a ser publicada.

GC,MD, MC, EN - Conceptualization, data curation, formal analysis, methodology, project management, validation, original writing-draft, writing-revision and editing.

All the authors approved the final version to published.

RESPONSABILIDADES ÉTICAS

CONFLITOS DE INTERESSE: Os autores declaram a inexistência de conflitos de interesse na realização do presente trabalho.

FONTES DE FINANCIAMENTO: Não existiram fontes externas de financiamento para a realização deste artigo.

CONFIDENCIALIDADE DOS DADOS: Os autores declaram ter seguido os protocolos da sua instituição acerca da publicação dos dados de doentes.

CONSENTIMENTO: Consentimento do doente para publicação obtido.

PROVENIÊNCIA E REVISÃO POR PARES: Não comissionado; revisão externa por pares.

ETHICAL DISCLOSURES

CONFLICTS OF INTEREST: The authors have no conflicts of interest to declare.

FINANCING SUPPORT: This work has not received any contribution, grant or scholarship.

CONFIDENTIALITY OF DATA: The authors declare that they have followed the protocols of their work center on the publication of patient data.

PATIENT CONSENT: Consent for publication was obtained.

PROVENANCE AND PEER REVIEW: Not commissioned; externally peer-reviewed.

REFERENCES

- Shen X, Zhou Y, Shi X, Zhang S, Ding S, Ni L, et al. The application of deep learning in abdominal trauma diagnosis by CT imaging. World J Emerg Surg. 2024;19:17. doi: 10.1186/s13017-024-00546-7.
- 2. Kurniawan A, Adi K. Blunt renal trauma in ureteropelvic junction obstruction kidney: A case report. Int J Surg Case Rep. 2022;94:107005. doi: 10.1016/j.ijscr.2022.107005.
- 3. Kawashima A, Sandler CM, Corl FM, West OC, Tamm EP, Fishman EK, et al. Imaging of renal trauma: a comprehensive review. Radiographics. 2001;21:557-74. doi: 10.1148/radiographics.21.3.g01ma11557
- 4. Lindner AK, Luger AK, Fritz J, Stäblein J, Radmayr C, Aigner F, et al. Do we need repeated CT imaging in uncomplicated blunt renal injuries? Experiences of a high-volume urological trauma centre. World J Emerg Surg. 2022;17:38. doi: 10.1186/s13017-022-00445-9.
- Kawashima A, Sandler CM, Corl FM, West OC, Tamm EP, Fishman EK, et al. Imaging evaluation of posttraumatic renal injuries. Abdom Imaging. 2002;27:199-213. doi: 10.1007/ s00261-001-0060-5.
- 6. Duarte ML, Abreu BFBB, Delcaro FT, Duarte ER. Lesão renal no trauma abdominal fechado Diagnóstico pelos exames de imagem. Rev Méd Paraná. 2020; 78:78-81.